Who knows best?

The role of stakeholder knowledge in land use models

Richard Hewitt¹

1. Observatorio para una cultura del territorio, C/ Duque de Fernán Núñez, 2,1, Madrid 2812, Spain

richard.hewitt@observatorioculturayterritorio.org

www.observatorioculturayterritorio.org

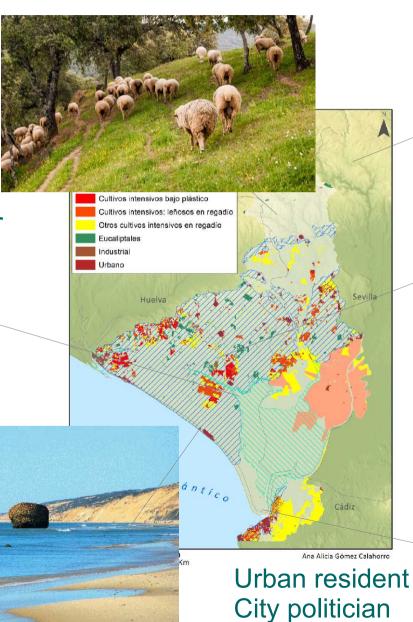
Stakeholders in land use change

Land use change is the aggregate effect of all stakeholders' activities.

To understand the variety of possible futures in the territory, a wide range of stakeholders need to be involved

From planning for the people...

To planning BY the people...


Land use stakeholders

Livestock keeper Rural resident

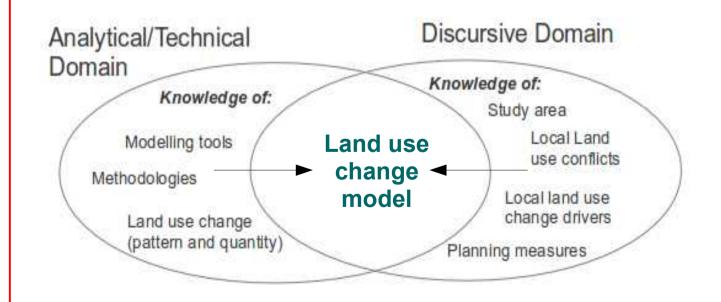
Ecologist, conservation scientist Protected area manager Visitor

Beach tourist Local tourism reps

Winemaker Local businesspeople Agricultural engineer

Migrant worker Farmer Water committee

Discursive vs Analytical approaches

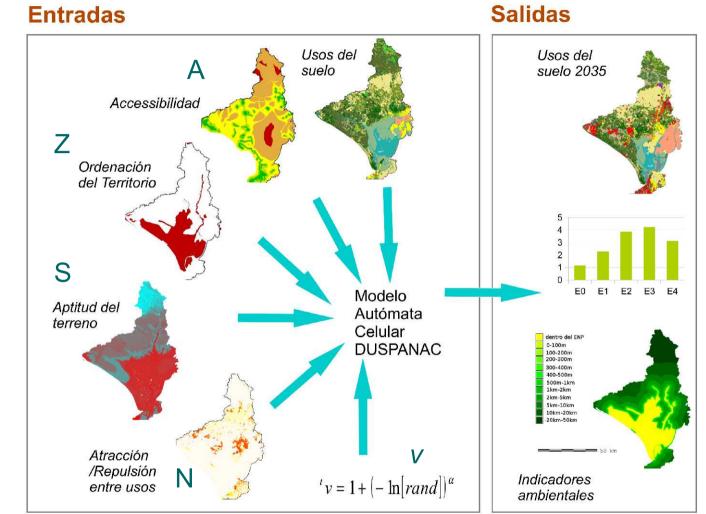

Discursive or "Soft-science" methods are useful in cases where human behaviour or interaction is important (e.g. land use policy)

- may involve participatory techniques for qualitative/approximate information

Analytical or "Hard-science" approaches are relevant to the study of natural phenomena (e.g. degradation of a natural resource), and involve mathematical and quantitative methods which provide precise, numerical data.

In cases of humanenvironment interaction both kinds of information are necessary....

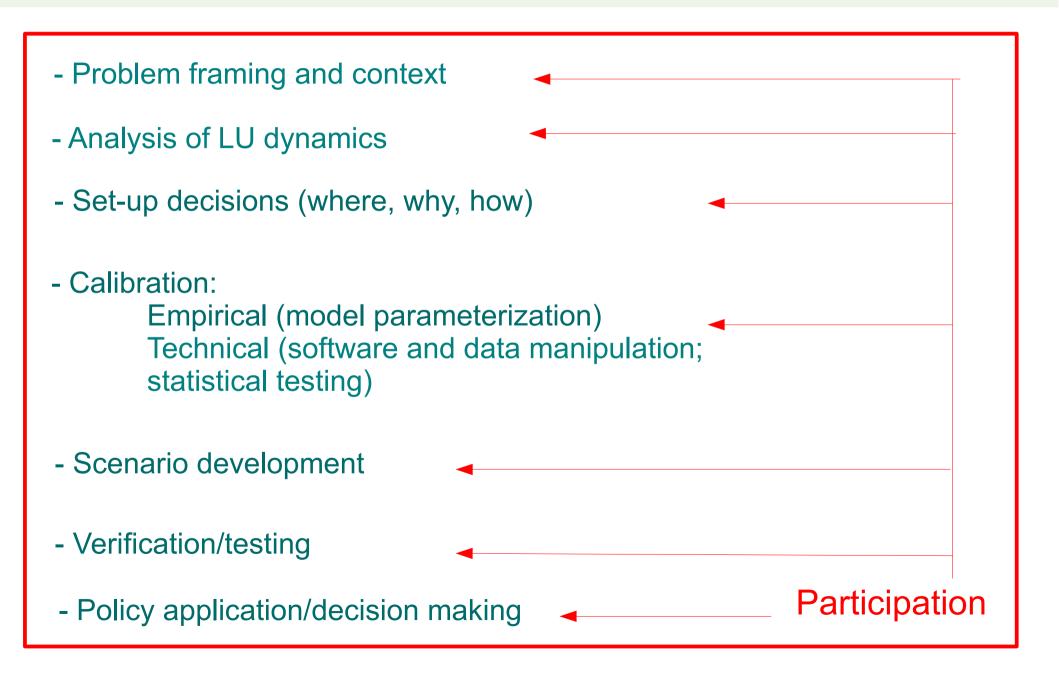
A land use change model can bring both domains together...


Modelling land use change

The study of *change* implies a dynamic approach (i.e. that includes time).

If the drivers of LUCC (e.g. road network expansion drives urban sprawl) can be found, then land use change over time....

T0, T1, T2 ... Tn


...can be replicated artificially through *transition rules.*

The NASZ model of White and collaborators (White and Engelen 1993, White et al 2000 etc)

By applying transition rules to current land use patterns (NASZ + v) It may be possible to approximate future land use configurations

Modelling steps and involving stakeholders

Participatory land use modelling in practice - case studies

1. Doñana Natural Area (DUSPANAC, SIGEOMOD 2020) – DUSPANAC model

Cellular Automata-based land use model (Metronamica)

5 future scenarios to 2035 (Eco-Futures)

Participatory input to parameterization, calibration, scenario development, indicators and model/process evaluation

Actor behaviour **implicitly** modelled through main model parameters. Transition potential for each cell calculated for every T by:

 $TP = N^*A^*S^*Z^*v$

2. Navarre, Spain and Overijssel, NL (COMPLEX) – the ApoLUS model

Cellular Automata-based land use model (R platform)

4 scenarios to 2050 (low-carbon economy)

Participatory input as above but also around actor dynamics

Actor behaviour **explicitly** modelled through main model parameters and one additional actor dynamics parameter

$TP = D^*N^*A^*S^*Z^*v$

Case 1: Participatory modelling in Doñana (DUSPANAC)

Series of interconnected coastal dune and wetland ecosystems, Huelva, SW Spain

Outstanding importance for biodiversity

Socio-economic development of the region in the last 60 years has increased percapita income but led to environmental deterioration – agricultural intensification, urban sprawl, infrastructures etc.

Growing awareness of the importance of the natural area - PN 1969, UNESCO 1993, and others....

A SUSTANABLE FUTURE FOR DOÑANA?

Spatial modelling to explore future land change tendencies, raise awarness and involve stakeholders

DUSPANAC – stakeholder engagement

Stakeholder, by sector	WS1	WS2	WS3
SCIENCE			
Researcher, Autonomous University of Madrid	yes	yes	yes
Researcher and University Lecturer, University of Seville	yes	yes	yes
Researcer, Doñana Biological Station (National Scientific Institute)	yes	yes	yes
AGRICULTURE			
Director, federation of rice farmers, Seville	yes	yes	yes
Representative, young farmers agricultural association (ASAJA) Representative, Andalusian Farmers and Livestock keepers union Huelva division.	yes , no	yes	yes
TOURISM	no	yes	yes
Tourism representative, Doñana natural area	no	yes	yes
LOCAL POLICY MAKERS			,
Moguer Municipal council, Environment technician	yes	no	yes
Representative Doñana 21 Foundation	yes	yes	yes
Almonte Municipal council, Environment technician	no	no	ves
REGIONAL POLICY MAKERS			
Regional administration, environmental research division	no	yes	yes
Regional administration, environmental research division	no	yes	yes
NATURAL AREA MANAGERS			
Autonomous Body for National parks, head of project monitoring	yes	yes	no
Director, Doñana Natural Area	yes	yes	si
Sub-director, Doñana Natural Area	yes	no	?
Director of Conservation, Doñana Natural Area	yes	no	?
Director of Public Use, Doñana Natural Area	yes	yes	yes
Guide, Doñana Natural Area	no	no	yes
Monitoring division, Doñana Natural Area	yes	yes	yes
ENVIRONMENTALISTS			
Ex- Ecologistas en acción (Environmental group)	yes	no	yes
World Wildlife Fund	no	no	yes

3 workshops average of 12 participants from:

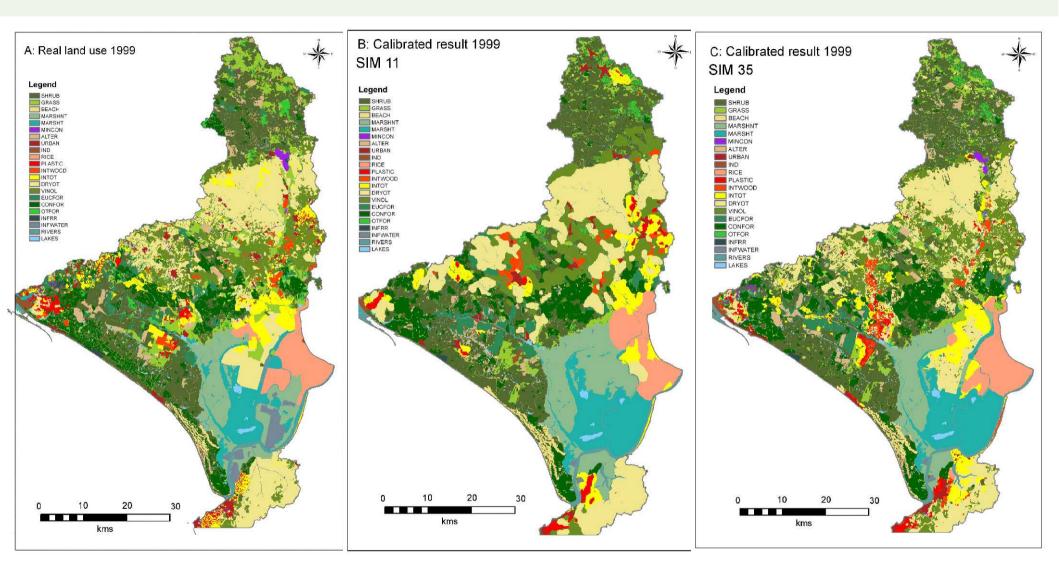
Science Agriculture/Livestock Tourism Policy makers Local, Regional Natural Protected Area managers (national, regional, local) Environmentalists' groups

DUSPANAC – Model parametrisation

See http://www.geogra.uah.es/duspanac/)

- 1. Deciding model study area PN or watershed
- 2. Participatory reclassification of land use categories for modelling
- 3. Participatory analysis of land change dynamics and identification of land change drivers

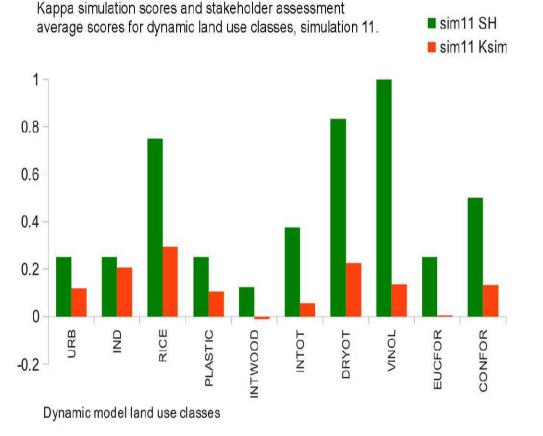
Infraestructuras hidráulicas Código de Uso DUSPANAC: 11 INFHYD


Agrupa a: 321 Canales artificiales; 341 Embalses; 345 Balsas de riego y ganaderas

Definición: Comprende todo tipo de cauces construidos por el hombre, como conducciones y canalizaciones destinadas al transporte de agua (canales de riego). Se incluyen también en esta categoría embalses y balsas de agua artificiales para labores agrícolas ganaderas.

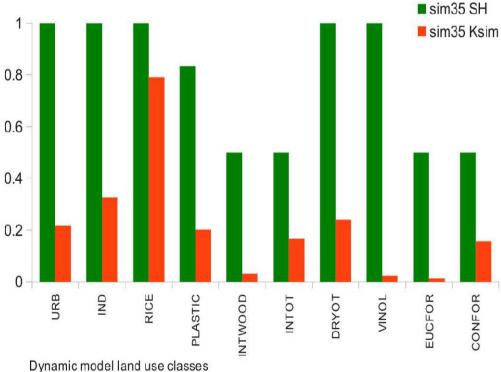
Dynamic (clc) 1990-2006	drivers of change (see key to locations)	gains/losses	reliability of dynamic as presented	group
3. Increase in artificial surfaces, 1990-2006	 Mining Periurban expansion on the outskirts of Seville Periurban expansion of Sanlúcar de la Barrameda Urbanisation of Matalascañas tourist resort 	1: not specified 2: gains in terms of economic growth of municipalities. losses to agriculture, landscape and water (quality and quantity) 3-4:Gains to tourism industry losses to water and landscape	High	1
	 Residential areas, some due to the influence of Seville. Industrial estates Port areas 	The builders got their boots on! (they won). Losses to natural areas, Loss of environmental quality (waste, rivers, purification plants can't keep up)	OK	2
	Agricultural and urban policy, regional and municipal level.	Losses to agricultural areas, due to building of accommodation for temporary workers and agricultural labourers and construction of fruit processing areas.	The map does not properly represent the changes due to isolated construction in agricultural areas.	3

DUSPANAC – 4a: Visual inspection of calibration results


Real map 1999 (calibration date)

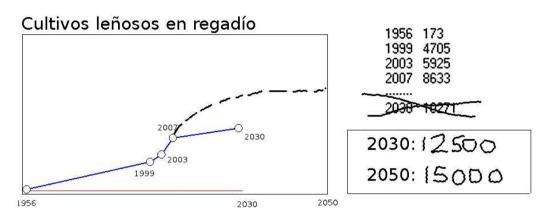
Sim 11

Sim 35


DUSPANAC – 4b: Visual inspection of calibration results

Sim 11

Sim 35


Kappa simulation scores and stakeholder assessment average scores for dynamic land use classes, simulation 35.

Stakeholder evaluation scores broadly supported by Ksim and clumpiness statistics

DUSPANAC – 5: Scenario development

Stakeholder estimation of land use demand for future scenarios:

Activity 2a, estimating the demand in ha for each scenario

Scenario 1, Doñana Global knowledge (Palomo et al 2012)

Activity 2b, locating the estimated demand on the map

> Land use demand estimated by stakeholders used as direct model input

Stakeholders have prioritized a series of indicators ...

G

		N°	Indicadores por orden de importancia
rupo 1	Grupo 2	1	¿Existen indicadores que vinculen los procesos sociales y culturales (incremento de niveles educativos, alfabetización tecnológica, servicios culturales y sociales disponibles, bibliotecas, centros
 Superficie zonas protegidas / Superficie 	S		de salud) con los usos del suelo?
total.	r S ■ ■ ■	2	Superficie de ecosistemas naturales y agricultura tradicional fuera de los espacios protegidos.
Superficie total. V Evolución masas forestales.	e ✔ A d	3	¿Existe un indicador que vincule la participación y gestión democrática del territorio con los usos del suelo? (Plan Corona Forestal por ejemplo)
 Abandono. Situación de la costa y núcleos costeros. 	✓ S 0 0	4	Servicios de los ecosistemas.
 Sellado. Evolución de las masas de 	r ∠ S	5	índice de conectividad.
agua superficial e interna. ✓ Evolución de suelos	✓ □ (r	6	Superficie de marisma mareal.
urbanos, concentrado y disperso. ✓ Evolución de cultivos	✓ S e	7	Longitud o superficie de bosques de ribera.
 Evolución de cultivos agrícolas tradicionales y ecológicos. 	vr L b vr ∫r	8	Consumo de agua (agrícola, doméstica).
 Indicadores paisajísticos. Evolución del turismo. 	✓ P te	9	Calidad de agua.
 Evolución de cultivos en regadio. 		10	Producción de residuos (Toneladas producidas)
 Cambio de localización de usos del suelo/Estabilidad espacial. 		11	Presencia de industria tecnológica.

sociales y culturales (incremento de niveles educativos, alfabetización tecnológica, servicios culturales y sociales disponibles, bibliotecas, centros de salud...) con los usos del suelo?

The next step is to use the model to output indicators under each scenario ... SIGEOMOD 2020

COMPLEX FP7 – Realising climate mitigation strategies

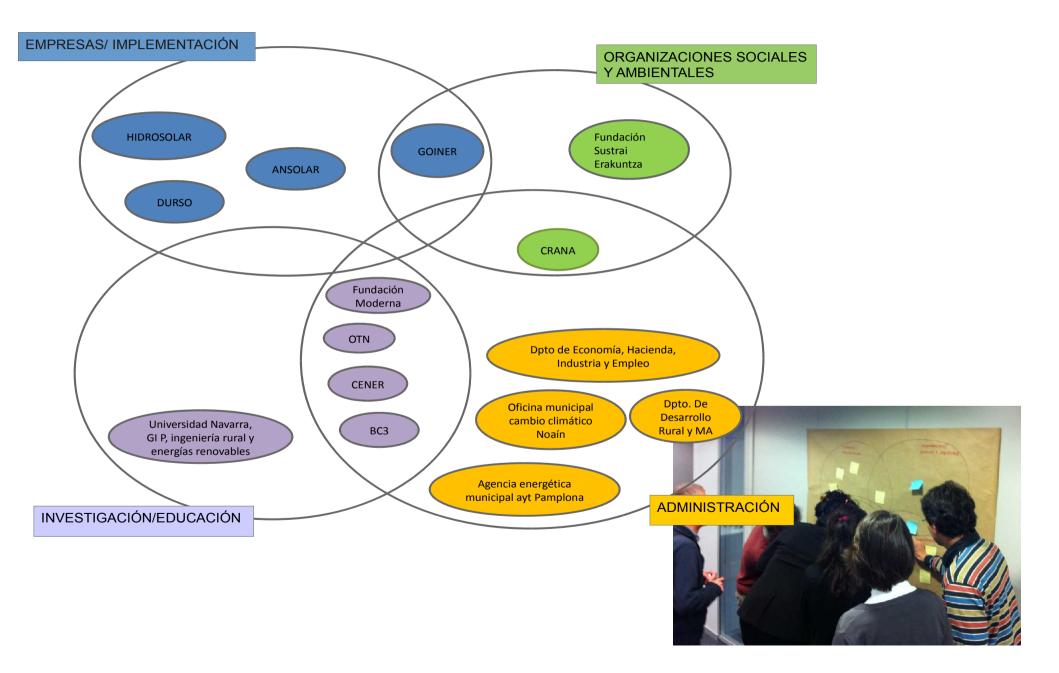
http://spcomplex.wordpress.com/

Aims:

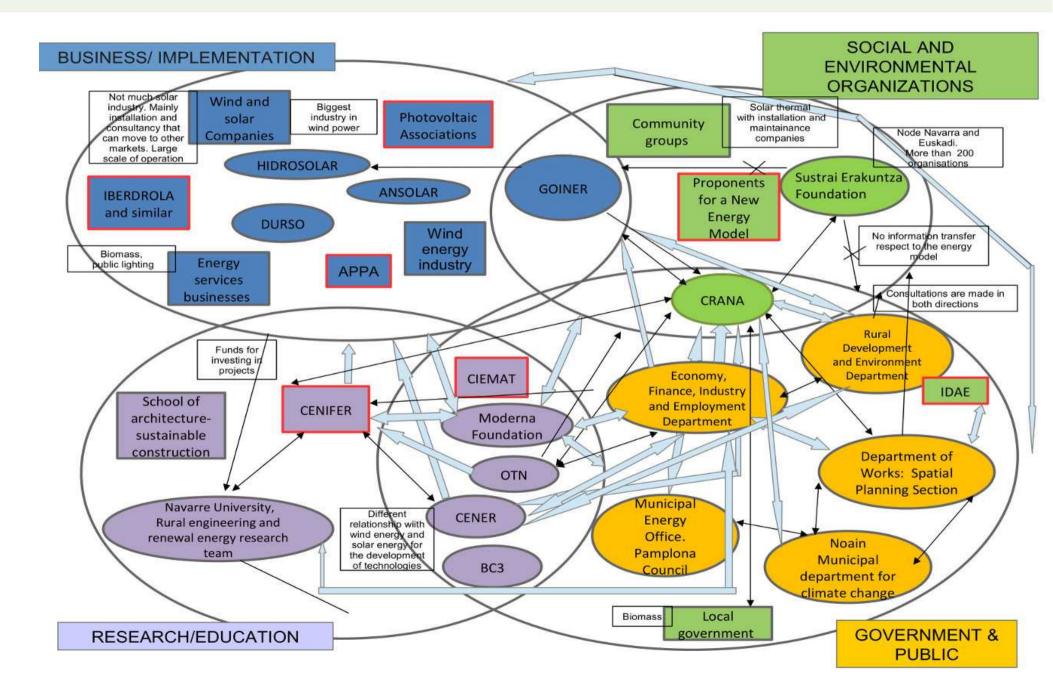
- 1. Increase knowledge about renewable energy installations and land use
- 2. Identify possible future routes for RE implementation that allow EU roadmap 2050 objectives to be acheived
- 3. Facilitate decision making around climate change mitigation and RE in the territory

A land use model incorporating actor dynamics to test RE implementation under future scenarios

Proyecto COMPLEX


El cambio climático es el principal reto ambiental, económico y social al que se enfrenta la comunidad internacional en la actualidad. Como fenómeno global, la mayoría de gobiernos nacionales han definido sus objetivos para intentar mitigar el cambio climático mediante la reducción de las emisiones de gases de efecto invernadero y la adopción de sistemas de producción bajos en carbono. Los Estados Miembros, España entre ellos, necesitan cumplir estos objetivos. No obstante, el éxito que logren estas políticas y su alcance, dependerá de la actitud y el posicionamiento de los agentes implicados en el proceso.

Clic aquí para ir a la web principal del proyecto COMPLEX FP7.



COMPLEX – Incorporating actor dynamics

COMPLEX – Incorporating actor dynamics

COMPLEX – Incorporatin	a actor dynamics	4 +	D
	Select actor		
WS1 – problem framing, defir	nition actor characteristics	actor_BIG_ENERGY_COMP actor_NAT_ELEC_SUPP actor_NAT_GOV actor_REG_GOV actor_MUNI_GOV actor_LAND_OWNERS actor_ENERGY_COOP actor_ENV	
Policy implementation contex	t and power relations	actor_SMEs_RE actor_ASSOC How would you rate this actor's power? Low Medium	
Motivation, cognition, resoland level of action.	urces, power, affinity,	High How would you rate this actor's motivation Low Medium	n?
		High How would you rate this actor's cognition	22
		Low	100
		Medium	
		High	
Motivation, Cognition, Resources Low = 0.1 Medium = 0.5 High = 0.9	Affinity In Favour = 2 Neutral = 1 Opposed = -2	How would you rate this actor's resources Low Medium High Where do this actor's affinities lie? In Favour	5?
Power Low = 1 Medium = 2 High = 3	Level of action National, Regional, Local	Neutral Opposed What is this actor's principal level of actio National Regional Local	n?

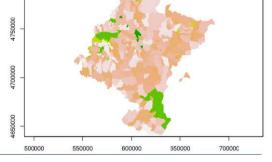
OK

17

COMPLEX – Quantifying actor dynamics for the spatial model

TP = D*N*A*S*Z*v (applied only to RE land uses)

For each actor, a map is created at that actor's level of action, having values equal to **D**:


D = C*P where: **C** = ∑[m,c,r] and **P** = p*a

[Eqn. 3]

[Eqn.1]

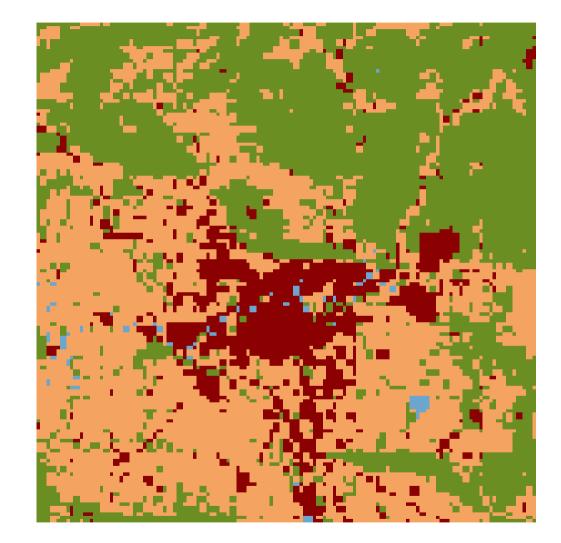
[Eqn. 2]

local.level.map

where p,m,c,r,a are scores for power, motivation, cognition, resources and affinity.

actor	motivation	cognition	resources	power	affinity	level	result
1 actor_BIG_ENERGY_COMP	0.1	0.5	0.9	3	-2	1	-9
2 actor_NAT_ELEC_SUPP	0.1	0.5	0.1	3	-2	1	-4.2
3 actor_NAT_GOV	0.1	0.9	0.9	3	-2	1	-11.4
4 actor_REG_GOV	0.5	0.9	0.9	3	1	2	6.9
5 actor_MUNI_GOV	0.5	0.5	0.5	2	2	3	6
6 actor_LAND_OWNERS	0.5	0.5	0.5	2	1	2	3
7 actor_ENERGY_COOP	0.9	0.5	0.5	1	2	2	3.8
8 actor_ENV	0.9	0.5	0.9	3	2	2	13.8
9 actor_SMEs_RE	0.5	0.5	0.5	2	1	2	3
10 actor_ASSOC	0.5	0.5	0.5	1	1	2	1.5
11 actor_SCI_and_UNIV	0.9	0.9	0.5	1	2	2	4.6
12 actor_MEDIA	0.5	0.5	0.9	2	1	1	3.8

COMPLEX – ApoLUS simulations


Simulation of the effect of actor dynamics in the municipality of Pamplona on solar panel iinstallation (yellow)

Actor_muni_gov (pamplona) D = 6

Simulation of the effect of strongly opposed actors at national or regional level

Actor_big_energy_comp D = -9

Actor_nat_gov D = -11.4

What effect will these values have on the spatial model?

COMPLEX – APoLUS next steps

1. Solicit information from stakeholders on actor characteristics at municipal level

(needs strong implication of municipal governments)

2. use actor characteristics to modify demand (D value input to demand)

3. Further work with stakeholders to define scenarios for renewable energy development up to 2050

4, Output land use maps for 2015 under each scenario and test with stakeholders

5. Participatory evaluation of model utility and succes of participatory process

- 6. Policy briefings and recommendations
- 7. Release model software and code to community

🗖 APoLUS main st 🛧 🚊 🗖 🗙

- 1. Import region maps
- 2. Import land use maps
- 3. Set agents' characteristics
- 4. Calibrate Neighbourhood
- 5. Calibrate Accessibility
- 6. Calibrate Suitability

7. Run model

Conclusions: advantages and disadvantages

Pros

Better model!

Wider uptake/more chance the system will be used

Break down barriers between scientist, policy maker and citizen

Shared learning and appreciation of other perspectives

Applicable to complex systems and "wicked" problems

Move debate on from pure prediction – brackets, boundaries, thresholds, probability ranges, indicators Time consuming

Cons

Success not guaranteed!

Adequate fit between stakeholder selection and task very important

False expectations and disappointment in stakeholders (scenarios, model results, science in general)

Harder to fund than conventional studies (though this may be changing) Option spaces not "decision support"

Many general tools not a single out-of-the box software "solution"

Facilitation not a turn-key itinerary

Researcher/scientist as one stakeholder among many

Modelling as a process, not a one off activity

Conclusions: what's important? Accuracy? Replicability?

A proposition:

A policy-relevant land use model should be:

- 1. Analytical/Discursive
- 2. Cyclical/Iterative
- 3. Refutable
- 4. Open to all stakeholders to modify, use and copy (replicable)
- 5. Useful

Thank you!

richard.hewitt@observatorioculturayterritorio.org

DUSPANAC (2011-13): Spanish national parks authority 2010 research call

SIMULACIONES GEOMÁTICAS PARA MODELIZAR DINÁMICAS AMBIENTALES AVANCES METODOLÓGICOS Y TEMÁTICOS

SIGEOMOD2020 (2014-16): Spanish ministry of economy, national research plan

COMPLEX (2012-16) EU FP7

Project Ref no. 308601

