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Abstract

This research suggests that the degree of variability in a Cellular Automata (CA)
urban land use model application may be linked to the application's suitability for
modelling complex urban systems. Although highly stable models may be perceived
as desirable, because they produce reliable, realistic-looking land use simulations,
there is a risk that they may not be able to simulate true urban complexity. To test this
hypothesis, variability was analysed through a sensitivity analysis in which a
calibrated CA land use model application was modified repeatedly to produce a
range of model variants with different characteristics. Since model scale is a key
attribute known from literature to strongly influence model results, sensitivity analysis
was conducted with reference to the scale-related elements (cell resolution,
neighbourhood effect) in the model. Variation was found to be slight even between
applications having widely differing cell resolutions and neighbourhood distance
decay effects. It is contended that this is not an application-specific question, but a
feature of these types of models more generally, where simple rules, strong
constraints and a low degree of stochastic variation tend to produce highly stable
simulation outcomes. To address the question of whether such stable model
applications are really suitability for simulating urban complexity, the applications are

discussed with relevance to three key indicators of complexity; 1) spontaneous
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emergence, 2) bifurcation; 3) critical transitions. Finally, we ask whether the

requirement of metastability necessary for calibration of such models violates the

assumption of freedom from systemic constraints that would allow true complexity to

be simulated. Some suggestions are made as to how these issues might be resolved

in future, allowing a new generation of models to emerge.
Highlights

Cellular automata (CA) land use models are analysed from a systems
perspective.

Highly stable models may be perceived as desirable but there is a risk that
they may not be able to simulate true urban complexity.

To test this hypothesis, a sensitivity analysis is carried out for a CA model
application by changing cell resolutions and neighbourhood effects.

Though the sensitivity analysis suggested that the application was quite
stable, key characteristics of complex systems could be identified.

These kinds of models are not presently able to simulate critical transitions of
the kind found in some Agent-based models.

The ability of these models to simulate true complexity depends on the
individual case and is sometimes overstated.

While highly stable model applications may be suitable for some specific

cases,, model constraints should be relaxed for exploratory purposes.
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Introduction

Cellular Automata (CA) models of land use change are popular and useful tools for
simulating complexity in urban systems (e.g. White and Engelen 1993, Clark et al
1997, Besussi et al 1998, Batty and Torrens 2001). Early model applications were
able to simulate complex patterns of urban growth, self-organization and change
(White and Engelen 1993, Clark et al 1997). However, it has since become common
practice to apply constraints to the CA model to improve realism and application to
real world problems. Though this has arguably made the models much more useful,
no detailed research is available about the degree to which constraints may limit the
CA's ability to simulate complexity. A highly constrained CA model may jettison this
capability completely and predictably return only a few basic patterns. A sensitivity
analysis, therefore, is useful in a CA model, not so much to ensure that model
behaviour is stable, but rather to ensure that it is not so stable as to prevent any
possibility of that some of the more interesting features of complex systems

(emergence, bifurcation, critical transitions) might appear.

In this paper this question is addressed by developing, calibrating, validating, and
undertaking detailed sensitivity analysis on a land use model for the region of Madrid,
using the well-known and widely used Cellular Automata (CA) modelling framework
developed by White and co-workers (e.g. White and Engelen 1993, White et al 1997,
White and Engelen 2000 etc), in its most widely known software implementation,

Metronamica.

Research Background

Modelling complexity in Urban systems

The theory of cities as complex systems has been attributed to Peter Allen (e.g. Allen
and Sanglier 1981; cited by Portugali 2013) but is rooted in earlier developments in
systems theory (e.g. Churchman 1968) and far-from-equilibrium thermodynamics
(Prigogine 1980). In a landmark paper, White and Engelen (1993) showed that a
computer model based on Cellular Automata (CA) could be used to generate realistic
simulations of urban systems in which key features of complex systems identified in
the earlier literature, e.g. spontaneous emergence of patterns, bifurcation, and
irreversible state transitions (e.g. Prigogine 1980, Allen and Sanglier 1981) were
clearly present. White and Engelen's model provided a template for simulation of

complex patterns of urban change, and has since seen many applications around
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the world (e.g. Barredo et al 2004; Lajoie and Hagen-Zanker 2007; Wickramasuriya
et al 2009). Since its initial development the model has been adapted to include, in
particular, a constraint on the number of cells that transform at each time step
(Demand); the influence of infrastructure networks (Accessibility); biophysical factors
such as terrain slope or aspect (Suitability); and planning restrictions (Zoning).
Despite these additions, the CA transition rules set (Neighbourhood dynamics) and
the stochastic perturbation term (v), remain at the core of the model. However, at
present, it remains unclear to what extent these additional constraints can be applied
before the CA is effectively overpowered and produces only predictable outcomes. In
this paper, we address this question with respect to three specific characteristics of

complexity identified in earlier models:

1. Bifurcation. As Prigogine (1996) has noted, bifurcation is a key property of far-
from-equilibrium systems. In such a system, fluctuations, produced for example, by
dissipative processes, can lead the system to “choose” between alternate states or
pathways. If bifurcation occurs repeatedly as part of a process chain, the system
takes on a branching structure giving rise to a very large number of possible end
states which are unpredictable ex ante. Bifurcations in the model described here are
the result of a random process introduced through the stochastic factor (v) which
affects the land use allocation decisions. Thus a land area that was not especially
attractive for a particular land use may suddenly become so. Cells are allocated in
the next time step to this new pole of attraction, causing a cluster. The
neighbourhood effect caused by the new cluster causes this cluster to grow. Since
the demand is exogenously defined true spatial bifurcations can occur, because land
allocated to this new cluster cannot now be allocated anywhere else. The system has
been transformed in a way that could not have been predicted.. This behaviour is
described by White and Engelen (1997, p. 244) in their model of the island of
SimLucia. A forest area on the northeast of the island was converted to agriculture in
around 20% of the simulations, a result of a random allocation in an area where

potential for this transition to occur was already high.

2. Emergence. For the purposes of this article, we define emergence simply as “the
capability of the model to produce isolated spatial structures beyond the influence of
the cell neighbourhood”. This is a characteristic of all classic urban CA models (e.g.

Clarke and Gaydos 1998, White 1998) and is also an observable property of cities



129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

themselves. We argue that a model that does not show emergent behaviour may not

be suitable for simulating urban complexity.

3. Critical transitions. In theory, a self-organising system with highly innovative
emergent properties and very strong bifurcations could produce transitions at the
level of the system itself, causing flips from one state to another. With respect to CA
models, the special bifurcation case described above in the SimLucia model (White
and Engelen 1997) might arguably also be a case of a critical transition, since,
although the forest to agriculture conversion only occurred around 20% of the time,
when it did, it seemed to be because the stochastic variability had caused a critical
threshold to be crossed. However, it could be argued that to differentiate critical
transitions from bifurcations, a state change would need to be observed at the level
of the system. In the case described it's not clear that the forest-to-agriculture
conversion described actually caused a significant system transformation. Clearly,
though, where emergence and bifurcations can be convincingly demonstrated, the
possibility that this behaviour may eventually culminate in a critical transition should

not be ruled out.

Aims

The aim of this work is therefore to explore how variability in the scale of the model,
reflected through the cell resolution and the neighbourhood effect, influences a land
use model's capacity to simulate land use change, and how this may determine the
usefulness of the model for simulation of complex urban systems. As a starting point
for our analysis, we make three basic assertions:

1) The basis of the CA model is spatial interaction in the cell neighbourhood
(neighbourhood dynamics), and this is the principal determinant of the model's
dynamic behaviour.

2) Neighbourhood dynamics, do, on their own, produce spatial patterns readily
identifiable as “complex”, as demonstrated by the previously mentioned work of
White and colleagues. These patterns are generated by the allocation of land use to
cells according to a cell's potential for that land use, The complex spatial patterning is
affected by the stochastic factor but unrelated to the externally generated demand.

3) The introduction of other spatial constraints like Accessibility, Suitability and

Zoning, as is typically done when calibrating a standard Metronamica application,
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may reduce the model's capability to simulate complexity and decrease the

usefulness of model applications.

Methods
The area selected for the analysis is the Madrid region (Figure 1), a Spanish

169 Autonomous Community and

province with around 6 million
inhabitants. This region was
chosen because of the

extraordinarily dynamic land

use change that the region
has undergone during recent
decades (until the beginning

of the current economic crisis

around 2008), and because a

a4 Urban Land 0 25 50 K . .
7 Municipalities | , [ R Europe. o5 k| highly  detailed  land  use
T I'TM - ETRS 19 2. Spain. ; ;
Highways UTM - FTRS 1989 |~ : database documenting this

Figure 1. Location of Madrid region
181 change has recently become

Source: Diaz-Pacheco and Gutiérrez, (2013) 182 available (Diaz-Pacheco and
183 Garcia Palomares 2014).

To carry out the sensitivity analysis, a Cellular Automata (CA) urban land use model
was built and calibrated for the case study area. The land use dataset used in the
model was Madrid Land Use (Diaz-Pacheco and Garcia Palomares 2014), a large
detail scale cartographic database of land use and land cover information for the
Madrid Region, covering the time periods 2000, 2006 and 2009. The Madrid Land

Use dataset comprises 12 land use classes of which 7 are urban.

The modelling framework adopted was that found in Metronamica, a popular land
use modelling software, which implements the CA modelling approach of White and
collaborators (White and Engelen 1993, White et al 1997, White et al 2000 etc). In
this model, the distribution of land use in a given area is represented as a raster map
in which each cell has a value which represents a land use. The value of the cells
can change according to a set of transition rules computed by a simple equation in

which the geographic effect of a cell over its neighbours (attraction or repulsion
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between land use cells) represents the main driving force of change in the system. A
random parameter to incorporate a degree of stochasticity into the model is also
introduced. Accessibility (e.g. distance to road networks) and suitability (e.g. degree
of terrain slope) parameters are introduced to align the model with the characteristics
of the study region. Finally a zoning parameter can be also added to allow the
influence of policies or planning scenarios to be introduced into the simulation. New
cells are allocated at each step of the model on the basis of the transition potential
computation (Eqn 1) until cell demand (determined exogenously) is exhausted or all

available cell space is used up.

Land use demand A is calculated for each yearly timestep by At,-Atq/to-t1, where Aty is
the number of cells for each land use in the land use map of the simulation start date,
At, is the number of cells for each land use in the land use map of the simulation end
date, t is the simulation end year and t, is the simulation start year. For simulations
of future dates where A is unknown, it is determined in various ways; e.g. by
extrapolating the historic linear growth tendency, through growth scenarios, or as in
this case, by using population projections to estimate the required urban area at the
future date (Fig. 2)

The demand is essential to the model's functioning, since without land to allocate,
nothing can change. However, the demand is not, on its own, responsible for the
model's dynamic behaviour — this is controlled by the interaction of land uses at
varying distances modelled through the neighbourhood rules. While complex spatial
interactions are more evident in the case of larger land demand, but this demand

does not affect where they will be located..

Figure 2: Demand in cells for 2000-2050, computed by compound annual growth. Top:

25mx25m resolution, Center: 50mx50m resolution, Bottom: 100mx100m resolution.
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The transition potential is specified as:
Pj:NjAj Sj \/i Zj [Eqn 1]

Where:

P; : Is the transition potential

A;: The accessibility from cell j to any element of the transport network

N;: Is the neighbourhood calculated by a function of a weighted sum to express the
influence of the state of a cell j over a specific group of cells into a specific range of
distance. The neighbourhood rules are user-defined forces of attraction and repulsion
that decay over distance (Figure 8). The influence score for the neighbourhood effect
(N) is a relative, not an absolute measure and is unbounded (-~ < N < «),

S;: Is the suitability of the cell j for changing to a specific state

Z;. Is the zoning status (land policies, planning, restrictions...) for the cell j

and:

v;. Is a random parameter which introduces stochastic perturbations on cell j

defined by the expression:

1+ (-In(1 - R))* [Egn. 2]
where R is a number from the Uniform distribution in the range 0-1, and a is the scale

of the stochastic effect, where 0 = no effect.

The model employs a tabula rasa approach whereby all cells in the model are
allocated at each timestep. Thus the only way to ensure persistence of the same

function land use in the model at multiple timesteps is to make this land use strongly
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attractive to itself (Fig 7), such that it will be almost always be allocated in its old

location before new locations are considered.

The application presented here does not incorporate zoning parameters in order to
give as much freedom to the system as possible. Thus transitions are determined
according to Eqn 1 by neighbourhood rules, accessibility and suitability only, with
occasional stochastic perturbations introduced by the random factor. Table 1 shows

the 5 simulations generated.

To calibrate the model, transition rules were established through a trial and error
approach, informed by previous analysis of land change processes in the region
(Diaz-Pacheco and Garcia Palomares 2014), and applied to the starting land use
map (2000) to generate simulations of the land use map for 2006. The transition
rules were modified until acceptable goodness of fit, according to standard statistical
measures - Kappa Simulation (Kgm), Fuzzy Kappa Simulation (Ksme), Fractal
Dimension (FD), and Clumpiness (C) - as well as visual inspection, was achieved.
Statistical testing was carried out in the Map Comparison Kit Software (Visser and De
Nijs 2006). The first of these, Kqm, is useful for determining the number of cells that
have been correctly simulated, taking into account only those parts of the map in
which change has actually occurred (Van Vliet et al 2011), the second, Ky, is a
modified version of Kq, which applies fuzzy set theory to include similarity of location
(Van Vliet et al 2013b) while the remaining two measures are used for determining
the degree of spatial similarity between elements in the simulated map and the real
map (White, 2006). The validity of the transition rules obtained in this way for the
period 2000-2006 were tested by running model simulations for a second time period
2006-2009 and testing against the map for 2009. This process is known as validation
(Van Vliet et al 2013a). Once acceptable calibration and validation values had been
obtained for the base model application, which had a 50x50 cell resolution and an 8
cell neighbourhood (AP50-N8, see Table 1), four variants of the model were created
(AP25-N8, AP100-N8, AP25-N16 and AP100-N4; see Table 1). In the new model
applications, the model's key parameters, the scale of the cell grid represented and
the scale of the neighbourhood effect, were modified. The new applications were
then tested using the procedure, and the statistical indices, described above. In this
way, the effect of significant parameter variations could be measured. Finally, future

land use simulations were run to the year 2050 for each application.
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290 Table 1: Scale changes in neighbourhood for each application
291
Application id: AP100-N8 AP100-N4 AP50-N8 AP25-N16 AP25-N8
Resolution 100x100 100x100 50x50 25x25 25x25
Halved
Doubled Doubled Halved
resolution
resolution resolution resolution
Equal
Equal radius in Unequal ) Unequal o
Feature of Original radius in
cells radius in radius in
changes cells
cells cells
. Unequal
Unequal radius  Equal radius Equal radius o
radius in
in meters in meters in meters
meters
Cell radius 8 4 8 16 8
Meter radius 800 400 400 400 250
Number of
197 49 197 788 197
cells
Area in m* 1,970,000 490,000 492,500 492,500 123,125
AP100-N8
AP100-N4 AP50-N8 AP25-N16
AP25-N8
(1] 4 8 [} 2 4 v] 4 8 0 8 16 04 8
Radius - 8 cells 4 cells 8 cells 16 cells 8 cells
aAUE= 8300 m. 400 m. 400 m. 400 m. 250 m.
292

10
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To test the effect of changing the scale of the neighbourhood rules (N), the
neighbourhood influence over distance was held constant in one set of applications
by modifying neighbourhood cell size according to the resolution, and changed in
another set of applications by holding neighbourhood cell size constant as global cell

resolution was varied (Table 1).

The strength of the random perturbation introduced by the parameter v can be
modified by the user, by changing the value of the scale factor, exponent a (see Eqn
2). Low scale factors tend to produce highly deterministic simulations while high
scale factors tend to produce a high number of random transitions. To test the extent
to which spatial allocation behaviour was determined by the random effect,

simulations to 2050 were carried out for a range of values of a (Fig. 5).

Accessibility is empirically calibrated for each simulated land use through a distance
decay function. In the case of the Madrid application, the distance to different
elements of the transport network, like the highways, roads, train stations and metro
stations was introduced. The accessibility values are introduced in a similar way for
each application, but in this case the values between the nearest and the furthest
distance considered to the network (roads, rail, highway, metro stations...) is
automatically computed by the software through a distance decay function. To ensure
that the Accessibility was the same for all applications distances were doubled or
halved in order to adapt the function at each application, e.g. if in the 50x50m
application was considered a value for the road influence at 200m to the residential
land cells, in the 100x100m application this value was doubled to 400m. to respect
the proportionality demanded by the size of the cell. Network weight values (to reflect
the different relative importance of networks to different land uses) were kept equal
for all applications. The only Suitability factor included is the slope of the terrain,
since this was found to be the only physical suitability factor of importance to urban
land change in this region. Suitability was held constant in all model applications. The
long term effects on the base model application (50x50m resolution) of including

parameters Accessibility and Suitability in the model were tested for the year 2050
(Fig. 6).

Results of calibration and validation of the initial 50x50m application

11
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Calibration was considered to be complete once values of 0.144 had been obtained
for Ksim- The values considerably outperform a null or neutral model (RAMD25, 50,
and 100) generated by the Random Constraint Match procedure implemented in the
Map Comparison Kit (Hagen-Zanker and Lajoie 2008). The model was considered
acceptably validated at 0.113 (Table 2). These values are comparable with published
values considered acceptable in other applications of the model (e.g. Van Vliet et al
2013a, Hewitt et al 2014).

Table 2: Values of the indices used for calibration and validation of the 50m base application.

Index AP50-00-06 AP50-06-09 RAMDS50
Kappa simulation 0.144 0.113
R. Multi-household 00226 00023 00811
Clumpiness Difference
R. Single-household 00018 0.0071 00754
Clumpiness Difference
Industrial 0.0235 0.0029 -0.1196
Clumpiness Diference
Facilities -0.0183 -0.0093 -0.0856
Clumpines Difference
Office and Reatil 0.0112 00081  -0.2593
Clumpiness Difference
Urban Green -0.0361 -0.0081 01115
Clumpiness Difference
Fractal Dimension 0.0070 0.0013 00268

Difference

CALIBRATION VALIDATION BENCHMARK
Datal&-5im06 Data09-8im09

Both clumpiness and mass fractal dimension are often employed in landscape
ecology to analyse landscape structure. In this research, these metrics allow the
spatial similarity of the simulated map and reference map to be assessed.
Clumpiness is a measure of the degree of dispersion/aggregation of the patches in
an image according to their type (McGarigal, 1994). Mass fractal dimension
measures the degree of “linearity” of elements in the map in which plane filling
objects like circles or squares will have a value of 2.0 and a line will have a value of
1.0 (Gardner et al, 1987). As goodness of fit improves, both clumpiness and mass

fractal dimension approach the values in the comparison map.

For both clumpiness and mass fractal dimension, the calibrated and validated
application achieved similar values and both outperform a random land use map
used as benchmark (Table 2). The same is true for the clumpiness index, tested for
each one of the simulated land uses. Once the simulation produced by the 50m

application was considered suitable to reproduce the land use patterns of change, its

12
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scale characteristics were modified according to the procedure previously described

in order to evaluate their effects on the model (Table 1).

RESULTS

The influence of the stochastic factor

The results of the sensitivity test for the stochastic factor are shown below. Low
randomness has been compared with medium randomness (Fig. 3; right) and with
high randomness (Fig. 3; far right). All tests were performed for Neighbourhood and
random factor only, so as to provide the maximum freedom possible to the model.
Fractal dimension statistics for these tests are given in Table 3.

These results allow some interesting conclusions to be drawn:

1. Randomness is not responsible for the presence of complex behaviour in the
model, cell resolution seems to be much more important. This is because at higher
cell resolutions more cells are allocated, and thus there are more opportunities for
emergence and bifurcations. Note how emergent structures can be clearly identified
in the highly deterministic simulation for 25m cell resolution (Fig. 3, top left. , sim
2050 a 0.1, see the bottom right cormer of the madrid region), while the same

structures are not present in the a 0.1 simulations for larger cell sizes.

2. High randomness can prevent the formation of new complex structures by
producing excessive scattering. Thus, although emergence is present and
bifurcations are evident, model behaviour is so dynamic that emergent cells do not
grow into recognisable clusters. This suggests that, contrary to what might logically
be expected, adding more randomness may make the spatial pattern more stable
(but more and more noisy) until a critical threshold is exceeded and underlying
patterns are completely out-competed by very high random values everywhere. This
behaviour is most pronounced for values of a >0.9, and is therefore not easily

observable in Fig. 3.
3. Clumping and dispersion seem to be more strongly related to cell size than to
randomness. Note how the bottom row of simulations are significantly more clumped

than the top row of simulations, which show a tendency towards dispersion (Table 3).

The cluster rank-size plot (Figure 4) supports these results, showing that with

13
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increasing a, more small clusters are generated. By this indicator, simulations deviate
further and further from the data as a is increased. The Fractal dimension

comparison results (Table 3) also support this conclusion.

Table 3: Fractal dimension comparison results for simulations under different values of a.
Here, the fractal dimension index for all the active land uses in the map for simulations of the
year 2050 under different values of a has been compared with the map of the same land uses

in 2000. Note how the global difference increases with increasing a.

Data Map 5im2050 Sim2050 Sim2050 Random
Cell Size 2000 a=0,1 Diff.Data w@=0,5 Diff.Data «=0,9 Diff. Data Map  Diff. Data
25X25 1.41018 1.39543 || 0.01475 1.41508 0.0045 1.43608 4]] 0.0258 1.43953 ]| 0.02935
50X50 1.47777 1.46234 || 0.01493 1.47799 || 0.00022 1.4903 | 0.01253 1.50459 ]| 0.02682
100X100 1.52587 1.51499 0 1.52748 0.00161 1.53686 5| 0.01099 1.54465 I|II 0.01878
IIII Higher Absolute Difference gl Lower Absolute Difference

Sim=simulation Diff. Data= Global Difference in Fractal Dimension with Data Map

14



398 Figure 3: Simulations to 2050 (25x25; 50x50; and 100x100) changing values of a to 0.1; 0.5; and 0.9 (left) and comparing location results between simulations

399

Sim 2050 o =0.1

400

Sim 2050 o =0.5 Sim 2050¢.=0.9

a=0.1; 0=0.5 and simulations a=0.1; a=0.9 (right)

o=0.1/0=0.5 oa=0.1/0=09
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Figure 4; cluster size-frequency plot for different values of a and two
different cell resolutions.
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402 The influence of scale and cell size

403 The comparison results between the data for 2006 and simulations for the same year
404 are shown in Table 4.

405
406 Table 4: Map comparison results for applications. Abbreviations: AP50-25-100: applications

407 and resolutions; RAMD50-100-25: random simulations and resolutions.
Appli Benchmarks
Index AP50-N8 AP25-N8 AP100-N8 AP25-N16 AP100-N4 RAMDS50 RAMD100 RAMD25
Kappa simulation Jdll 0144 4l 0149 0116 gl 0146 .||| 0.158 - - -

R. Multi-household
Clumpiness Difference

R. Single-household 00018 wil0.0079 wl00111 00192 100250 00754 00643 00867
lumpiness Difference

'C'I':“';';:::; orerence 4100235 4ll0.0020 100409 00111 100409 01196 00991  0.352
Facilities

Clumpines Difference
Office and Retail
Clumpiness Difference
Urban Green
Clumpiness Difference

Fractal Dimension

4 0 8 Difference
409

all0.0226 4100430 gll00050 0.0400 il0.0007 0.0811 0.0602 01017

all0.0183  wl00290 il0.0085 00567 all0.0044 0.0856 0.0609 0.1054
alloo112  llo.0156 00731 /0.0284 0.0835 0.2593 0.1981 03007

all0.0361  llo0642  l0.0108 00849  4il0.0099 0.1115 0.0752 0.1550

W10.0070 4110.0108 gl 0.0053 00157  4il0.0003 0.0268 0.0182 0.0299
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According to the map comparison indices used, the simulation results from all of the
different applications (apps) for 2006 could be considered acceptable. Both the 25m
app with the 8 cell neighbourhood radius and the 100 m. app with the 4 cell
neighbourhood radius actually improve on the original 50 m 8 cell neighbourhood
radius app (Table 4). For clumpiness, the difference between the clumpiness of the
data and clumpiness of the simulations is comparable across all the applications, and
better than the random simulation used as a benchmark. The same is true of the
fractal dimension index. In some cases the scale-modified apps achieve slightly
better values than the initial app of 50m (e.g. in AP100-N4, clumpiness for multi-
household and facilities classes). However, better performance of some categories
tends to be compensated by poorer performance for others. Taken overall, the
differences between the scale-modified apps and the original app are not great
enough to be able to claim that any of the modified applications are significantly

better or worse than the original 50m app.

A visual comparison between the land use data maps for 2006 and the simulations
produced by the different applications (Fig. 5) supports the impression given by the
statistical comparisons (Table 4). This figure shows simulated (centre and right hand
column) and real (left hand column) land use for an enlargement of a highly
urbanized (mainly residential) area in 2006. The middle column of Fig. 5 shows the
apps with different resolutions (25m, 50m and 100 m) and the same neighbourhood
radius in cells (N8), such that the distance decay of the neighbourhood effect is
halved (SIM 2006 AP25-N8) and doubled (SIM 2006, AP25-N8) respect to the initial
calibration (SIM 2006, AP50-N8) as a result of the change in cell size. The right hand
column then shows the effect on the calibration of maintaining the distance decay of
the neighbourhood effect the same as in the initial calibration (SIM 2006, AP50-N8),
by increasing or decreasing the number of cells in the neighbourhood.

It is interesting to note that no simulation seems to be much better or worse than any
other. Some classes, e.g. Residential Multi-household are not simulated very
successfully in any application. This is probably because all locations in this
residential area were equally favourable, being close to existing urban areas, on

suitable land and close to transport networks.

The relationship between cell-size and the size of the land parcels is also clearly

shown. While it is not really possibly to identify the “correct” resolution statistically,
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the 50m resolution simulation seems to provide more realistic-looking results than the
25m and 100m resolution simulations because the cell size is a closer match to the
size of the actual land parcels. This demonstrates the limitations of the statistical
comparison methods and emphasises the importance of visual inspection when

choosing the right resolution for a given application.
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450 Fig. 5: Comparison of data 2006 (all with 8 cell neighbourhood radius) and simulations for
451 2006 from the different apps. Abbreviations: SIM: simulation; AP25-50-100: application and
452 resolution; N4-8: neighbourhood and radius.
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Discussion

Why is there so little variation between simulations?

The experiments with the random factor (Fig. 3, Fig. 4) show that, even over long
time periods, the cell size is ultimately more important in terms of map structure and
pattern than the level of randomness in the model. This supports the widely held view
(e.g. Ménard & Marceau 2005; Jantz and Goetz 2005) that cell resolution is very
important to the spatial behaviour of CA models. However, when this was specifically
tested by significantly varying both the the scale of the underlying grid and scale of
the neighbourhood effect for a range of otherwise identical simulations, no major
differences were found in model goodness of fit to data. Four possible explanations

can be advanced for this:

1) The cell neighbourhood is not the key change driver.

2) The relative scaling up or down of the map objects through the changing
resolutions affects both the simulation map and the comparison map equally.

3) The neighbourhood influence declines very steeply and that all important
interactions take place at near distances.

4) The calibration phase is too short for major differences to emerge.

These are considered as follows:

1) The cell neighbourhood is not the key change driver

The major driver of dynamic change in models of this type is typically the spatial
interaction in the cell neighbourhood. However, since major changes were made to
the spatial interaction rules in the different applications, it is possible that the low
degree of variation between them could be explained by the spatial interaction effects
being “cancelled out” or overruled by other model blocks like suitability or zoning.
However, this cannot be the correct explanation here, since zoning is absent in all
applications, and suitability is limited to a slope map, in which virtually all regions in
the Madrid metropolitan area are highly suitable. In any case, all the applications
outperform the benchmarks in which land change is randomly allocated in the
immediate vicinity of patches of the same land use (Table 4). Adding accessibility,
either alone or with suitability to a null model does not greatly improve goodness-of-fit
(see Table 5). These factors make it clear that the cell neighbourhood is a highly

important driver.
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Table 5: Running the model adding factors where N is Neighbourhood, A is Accessibility, S is
Suitability and v is random, and testing the results with the kappa simulation (Ksi) and fuzzy

kappa simulation (Ksim.) indices.

Factors Ksim Ksimr
Neighbourhood *Random 0.124 0.139
Neighbourhood * Accessibility * Random 0.141 0.155

Neighbourhood * Accessibility *Suitability * 0.144 0.158
Random

This conclusion is further supported when we compare the simulations for 2050 with
each other (Fig. 6). A model application in which Accessibility and Suitability
parameters are included (2050 'NASV' map, red in Fig. 6) does vary significantly from
a Neighbourhood * random only model (2050 'Nv' map, blue in Fig.6), but not for all
classes. Residential Single Household and Industrial land uses have already found a
relatively stable allocation pattern under Neighbourhood * random only.
Neighbourhood is therefore the most important determinant of location for these land
classes, and while Accessibility and Suitability parameters play a greater role in
spatial allocation for the other classes shown, the high coincidence in some areas (in
green in Fig. 6) further testifies to the importance of Neighbourhood in determining

model dynamics.

Figure 6: Map comparison by land use categories. Simulations 2050. NASv against Nv. M-H
= Multi-Household, S-H = Single Household.
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2) The relative scaling up or down of the map objects through the changing
resolutions affects both the simulation map and the comparison map equally.

The second explanation seems plausible for comparison between applications within
the same rules set (e.g. equal cell radius with unequal distance radius, or unequal
cell radius with equal distance radius) but does not offer a good explanation for the
similarity in goodness-of-fit across the rules sets. Since the comparison maps are the
same for both rules sets at each resolution, for this explanation to hold true, it would

be necessary to observe more substantial differences between the two rules sets.

3) The neighbourhood influence declines very steeply and that all important
interactions take place at near distances.

The third explanation has more merit and seems to offer a plausible reason for the
similarity in goodness-of-fit scores between simulations with quite extreme
differences in scale, e.g. AP100-N8 and AP25-N8 (100x100m apps with 800m
neighbourhood distance radii and 25x25 apps with 200m neighbourhood distance
radii respectively). For this set of applications, if neighbourhood rules were actively

determining the land use pattern at all distances, a linear decrease in accuracy of the

22



526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

547
548
549
550
551
552
553
554
555
556

simulation for the individual land use classes would be expected, since thematic
classification accuracy is known to decrease linearly as raster cell size size increases
(Carver and Brunsdon 1994). However, since the K, statistic does not measure
agreement across the entire map, only of change areas, it may be that simple
neighbourhood rules at close distances, maintained across all model applications are
sufficient to reproduce the most important patterns of change, and for this reason,

these patterns are extremely stable throughout all the applications.

Although the pattern statistics are slightly dissimilar between calibrations they seem
adequate in each case, and always outperform the benchmarks (Table 4). For
clumpiness in particular this is likely to be due to the fact that it is the type of rule
(Fig. 7) not the influence values or the length of the tail that determine the degree of

aggregation of the resulting pattern:

Figure 7: Two rules for a land use's attraction to itself. A; tends to produce scattered
(disaggregated) patterns; B: tends to produce large, clumped patches. The x axis represents
distance, typically not more than 8 cells, while the y axis is the neighbourhood influence value
assigned by the user, which is unbounded, but typically might be between 0 and 10000 for
attraction effects, with negative values for repulsion effects. As a consequence, since the
shape of the neighbourhood rules has been maintained, the degree of aggregation remains

comparable across simulations.

A B

/

4) The calibration phase is too short for major differences to emerge.

Results from testing the stochastic factor (Fig. 3, Fig. 4) suggest that changing cell
size results in significant differences in the pattern of land use allocation over long
time periods. Since no data exist for the year 2050, data and simulations cannot be
compared in the same way as for the calibration and validation years (2006 and
2009). For this reason, it's not possible to say whether major goodness of fit
differences would have emerged for different scales of application in the case of a

long calibration period. Testing this for a study area where land use maps for long
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historical time periods are available would be a useful next step.

Wider implications for simulation of urban complexity

The land use model discussed has been successfully calibrated and validated (sensu
van Vliet 2013a) according to all available guidelines and parallels in literature. Even
the poorest fitting application outperforms the null model and goodness of fit is
comparable with that considered acceptable in other models. The most visually
acceptable application seems therefore to be the most appropriate to use for
generation of future scenarios. But the very low degree of variation between
applications, despite the quite radical changes in scale, particularly in the cell
neighbourhood, lead us to question whether the model may be too stable to simulate
truly complex behaviour, as characterised by, for example; 1) spontaneous
emergence of new land patches; 2) bifurcations, where simulations take different
pathways at a particular timestep leading to two (or more) entirely different outcomes;
3) critical transitions or shocks — defined here as sudden state transformations
leading to completely new patterns (see, for example, Polhill et al 2016). In the
following paragraphs, we ask, with reference to the applications analysed in this
paper, to what extent these kinds of models can simulate this kind of behaviour, and

what this implies about their suitability for simulating complex urban systems.

Spontaneous emergence

The action of the stochastic parameter v means that land will sometimes be allocated
in cells that are generally otherwise not favoured, being far from existing cells of the
same type or having low accessibility. However, it is important to consider that very
restrictive suitability or zoning regimes will prevent this occurring, so it is not sufficient
just to cite the presence of the stochastic factor as proof that the model is non-
deterministic. If demand for land use A is 10 cells, and zoning or suitability restrictions
effectively leave only 10 cells free for its allocation, the outcome will be predictable
even if there is a high degree of stochasticity in the model. Further, in urban
simulation models of this type, it is common for single cells to appear and disappear
in subsequent timesteps. However, cells would need to be able to appear and then
grow into plausible land use patterns to qualify as truly emergent. In the applications
discussed here, the liberal nature of the suitability rules and the absence of zoning
mean that no such strong restrictions are present. Indeed, as Fig. 8a clearly shows,

spontaneous emergence is present in all applications.
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Bifurcation

White et al (2015: 19) provide a useful synthesis of bifurcation in complex systems
using the analogy of paddling a canoe upstream. In the metaphor of these authors,
bifurcation is the point at which the decision must be taken to paddle the canoe left or
right at a branch or fork in the river, with each choice leading to a different outcome.
In simulations that show true bifurcation, new urban land use clusters (sometimes
arising through spontaneous emergence) would grow and develop in one area in one
simulation (taking the left fork of the river) and in a different area in another (taking
the right fork of the river). It is clear that a useful model would be expected to
generate numerous bifurcations as many land areas may be equally suitable for new
land use allocation, just as a real city has many possible futures, not a single
predetermined pathway (White et al 2015: 11). In this model application, for example,
the poor fit to data of the Residential Multi-household land use class may in fact be
due to the presence of multiple suitable locations, resulting in effectively random
location decisions. As Fig. 8b shows, in this case, the Residential Multi-household
land use class allocation can “flip” between any of these suitable locations at random,
which is the equivalent, in the analogy of White et al (2015), of selecting multiple
divergent forks of the river. In the normal case, the range of possible future states
may be extremely large (a power law distribution x", where x the number of available
locations and n is the number of cells to be allocated). However, the vast majority of
these states are extremely similar to one another, so, from a single rule set, the
system does not per se function as generator of multiple diverse options. And as the
sensitivity analysis indicates, even quite major modifications to key model elements
may not increase this diversity. In Fig. 8b, for example, the similarity of the different
bifurcation paths end state for the year 2009 is probably due to the strong constraints

exercised by slope and accessibility.
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621 Figure 8a (left): Spontaneously emerging clusters over 9 timesteps in different model

622 resolutions. Figure 8b (right): Various model runs showing different configurations of
623 Residential Multi-Household land use simulated by timesteps.
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Critical transitions or shocks

An interesting example of a critical transition in a land use model can be found in the
work of Polhill et al (2016), for the FEARLUS model. In this model, agents (farm
businesses) drive agricultural land use change by searching for the most profitable
land use, with profitability being influenced by exogenous and endogenous variability
such as climate and characteristics of the individual land parcel. Once a profitable
land use is found by one agent, other agents adopt the same land use by imitation,
which eventually leads to homogenization of land uses and ultimately, a single land
use across the whole model. A decline in profitability of the only land use (which,
under a heterogeneous land use regime would cause agents to transition to another
land use), results in bankruptcy of all agents in the model in a single timestep. In our
model, this kind of transition would be almost impossible to simulate. There are two

principal reasons for this:

1) The model simulates spatial pattern and location of land use, not quantity. Thus
the number of cells to be allocated for each land use at each time step (the demand)
is determined exogenously in advance and introduced to the model before running
the simulations. For the calibration and validation phases of model application
development, the demand for each land use is simply the total number of cells for
that land use in the second map. For simulation of future scenarios, the demand
must be established for the future date by either extrapolating the linear historic
tendency or by estimating the demand in some other way, e.g. by consultation with
stakeholders, through scenarios, or according to targets established by policy
makers. Thus, even where one land use would occupy all of the map space at the
expense of others, it is not permitted to do so by the exogenous demand. This is a
difficult problem to resolve in the model as currently configured, since while the
demand can be set to whatever figure the researcher chooses, this demand is
always allocated as long as there is space in the map. One way of addressing this
would be to determine demand dynamically in a separate model block through the
interaction of various factors (e.g. economy, climate or policy), which could include
the amount of land use already allocated, thus introducing a feedback loop. In this
way, genuinely unpredictable results could be obtained from the interaction of various
components, simulating much more realistically the complex behaviour of a true

urban system.

27



663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697

2) The process of calibrating and validating the model with reference the historic
tendency determines, to a great extent, the path which the model must follow for
future dates. This aspect is discussed in detail by Brown et al (2005). These authors
note that attaining a close fit to real land use patterns risks overfitting the model and
reducing its capability to produce surprises. There is a true paradox here, since a
model not fitted to an historical tendency is an uncalibrated model. One possible
remedy for this is would be to focus more strongly on generating realistic growth
patterns and spatial structures, and less on attaining goodness of fit scores through
cell-by-cell comparison methods like Kgm. This problem can also be addressed to
some extent by using different calibrations of the model for simulating different future
scenarios. And even a highly overfitted model should be still able to produce a
reasonable variety of complex patterns, since the random factor will generate some
bifurcations and, if enough land is allocated, there will be some emergence (Fig. 3,
Fig. 8). To escape from this “calibration paradox”, it would be necessary to adapt it to
allow the spatial interaction rules themselves to evolve over time in response to some
kind of exogenous or endogenous but stochastic stimulus. In this way true critical
transitions might be generated in cell space at the level of the system — for example,
if neighbourhood attraction effects were converted to repulsion effects previously

clumped land uses could spontaneously scatter across the territory.

Equilibrium, metastability and innovation

Following the discussion given in the preceding paragraphs with regard to the
suitability of these types of models for simulating true complexity, it is possible to ask
a more general question — does the preoccupation with generating very accurate
simulations of land use patterns, and especially the use of heavy constraints through
the suitability and zoning blocks, prevent us from simulating complex behaviour?

And, following this question, a second question — does this matter?

To answer these questions, it is instructive to return to systems theory, which, after
all, lies at the heart of urban simulation modelling. Winder (2007) observes that a
system may be metastable; i.e. apparently at equilibrium but susceptible to
transformation to a lower energy state under certain conditions, or innovative, also
apparently at equilibrium but susceptible to transformations not governed by any rule
defined from within the system itself. For Winder, both types of systems are complex,

but while metastable systems are time-invariant and computably complex, innovative
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systems are uncomputably complex because the taxonomies are not preserved
across system states. This is relevant to the present work because land use models
function under the assumption, explicit or otherwise, that the system represented by
the running model is metastable, neither predictably stable nor unpredictably
innovative. This is clearly a useful assumption, since a stable model is completely
deterministic, while a truly innovative model may disappear, generate butterflies or
polar bears instead of land use, or get up and walk around the room. Leaving aside
the philosophical consideration that human systems, urban systems included, are
probably innovative in nature, the major concern of this paper is that most land use
model applications are stable, not metastable. While the land use modelling system
described here is capable of metastability, as clearly demonstrated by its ability to
generate, among other things, bifurcations and spontaneous emergence,
applications that prioritise exact replication of historic land use patterns according to
crisp (non-fuzzy) cell-by-cell comparison measures and that strongly restrict certain
parts of the model (e.g. through suitability and zoning) are not really, and should not

be claimed to be, complex simulation models.

To answer the second question, whether this matters or not depends entirely on the
objective of the research in question. A very stable, highly deterministic model may
still be useful for planning purposes, since it is often desirable to know which
locations are the most highly favoured for new urban development in the near future,
given the plausible assumption of a continuation of historic tendencies. On the other
hand, if the aim of the research is to explore what if? scenarios more broadly, it may
be useful to relax the model application's constraints to allow for real complex

behaviour.

Suggested modifications to the model to improve ability to simulate complexity
Further to the previous discussion, some modifications to the model can be

advanced that may improve its ability to simulate truly complex interaction processes.

Land use demand

Introduce a demand sub-model and feedback loops, perhaps also incorporating a
stochastic variable. By establishing land use demand through an exogenous
process, as in the FEARLUS model, and then allowing this demand to change,

according to economic factors or some other characteristics perhaps together with
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some random perturbation, it should be possible to replicate the effect of system
shocks, even if, in principle, this eventuality is not specifically defined in the

calibration process.

Calibration and validation approaches

In calibration and validation, concentrate on pattern and dynamic behaviour instead,
and try to avoid cell-by-cell comparison measures like K. If cell-by-cell comparison
cannot be avoided, use fuzzy instead of crisp measures. It is also recommended to

keep suitability and zoning very simple, or leave them out entirely.

Partial validation of each model block in turn

Hewitt et al (2014) apply a stepwise calibration procedure in which each of the key
model blocks (Neighbourhood, Accessibility, Suitability, Zoning) is evaluated
incrementally in turn. This approach can be used to check that spontaneous
emergence is truly occurring by evaluating in detail the number and location of
emergent clusters as each model block is applied. This is key to ensuring that
excessively restrictive rules in any of the blocks are not shutting out stochastic

variability.

Finally, in view of the approach taken in this research, we recommend carrying out a
model sensitivity analysis in order to understand the range of variability of which a

given model application is capable.

Future work

We suggest the following possible directions for future work:

1. Make specific modifications to the model discussed here to allow for the
simulation of critical transitions.

2. Apply spatial metrics to identify the dynamic emergence of complex spatial
patterns in real cities, and to try to link these to real historical events or processes.

3. Find ways to communicate uncertainty about results of these models to
stakeholder groups (e.g. land planners), rather than imposing more constraints to

make model applications “look right”.

CONCLUSIONS

A series of rigorous tests applied to a CA land use model of urban change have
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demonstrated that, contrary to expectations, major modifications to the scale of the
model, either by changing the cell resolution or by changing both cell resolution and
neighbourhood transition rules have relatively little effect on the accuracy of the
simulation results. This indicates that the transition rules are quite insensitive to
neighbourhood distance effects, probably because the most important
neighbourhood effects are all occurring at close distances. It is suggested that
excessive stability may sometimes limit the ability of these models to simulate
complex behaviour. However, despite the apparent insensitivity of the model
application investigated, features compatible with simulating complex urban systems
were found to be present. Nonetheless, while these kinds of CA land use model are
in principle capable of simulating complex behaviour, it does not necessarily follow
that any application that applies this modelling framework must automatically be able
to do so. In general, it is likely that these models, as habitually applied, are rather
more deterministic and quite a lot less applicable to simulation of complex systems
than is sometimes admitted. This may not present any problems in some land
planning contexts, but is likely to limit the usefulness of these models for freely
exploring what if tendencies. Some suggestions have been made both around
general application good practice and as to how the model could be adapted to
improve its ability to simulate true urban complexity. Finally, it is contended that
sensitivity analysis should be approached from the perspective of “optimal
sensitivity”, since a highly insensitive model may not be capable of producing any

surprises, and, as a result, may not, in fact, be useful.
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